Frobenius algebras and ambidextrous adjunctions
نویسنده
چکیده
In this paper we explain the relationship between Frobenius objects in monoidal categories and adjunctions in 2-categories. Specifically, we show that every Frobenius object in a monoidal category M arises from an ambijunction (simultaneous left and right adjoints) in some 2-category D into which M fully and faithfully embeds. Since a 2D topological quantum field theory is equivalent to a commutative Frobenius algebra, this result also shows that every 2D TQFT is obtained from an ambijunction in some 2-category. Our theorem is proved by extending the theory of adjoint monads to the context of an arbitrary 2-category and utilizing the free completion under Eilenberg-Moore objects. We then categorify this theorem by replacing the monoidal category M with a semistrict monoidal 2-category M , and replacing the 2-category D into which it embeds by a semistrict 3-category. To state this more powerful result, we must first define the notion of a ‘Frobenius pseudomonoid’, which categorifies that of a Frobenius object. We then define the notion of a ‘pseudo ambijunction’, categorifying that of an ambijunction. In each case, the idea is that all the usual axioms now hold only up to coherent isomorphism. Finally, we show that every Frobenius pseudomonoid in a semistrict monoidal 2-category arises from a pseudo ambijunction in some semistrict 3-category.
منابع مشابه
Ordinals in Frobenius Monads
This paper provides geometrical descriptions of the Frobenius monad freely generated by a single object. These descriptions are related to results connecting Frobenius algebras and topological quantum field theories. In these descriptions, which are based on coherence results for self-adjunctions (adjunctions where an endofunctor is adjoint to itself), ordinals in ε0 play a prominent role. The ...
متن کاملMonads on Dagger Categories
The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when all structure respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleis...
متن کاملAdjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملApplications of the Kleisli and Eilenberg-Moore 2-adjunctions
In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...
متن کاملA Representation Theorem for Geometric Morphisms
It it shown that geometric morphisms between elementary toposes can be represented as certain adjunctions between the corresponding categories of locales. These adjunctions are characterized by (i) they preserve the order enrichment and the Sierpiński locale, and (ii) they satisfy Frobenius reciprocity.
متن کامل